skip to main content


Search for: All records

Creators/Authors contains: "Blaes, Omer"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We present relativistic radiation magnetohydrodynamic simulations of supercritical neutron star accretion columns in Cartesian geometry, including temperature-dependent polarization-averaged Rosseland mean opacities accounting for classical electron scattering in a magnetic field. Just as in our previous pure Thomson scattering simulations, vertical oscillations of the accretion shock and horizontally propagating entropy waves (photon bubbles) are present in all our simulations. However, at high magnetic fields ≳1012 G, the magnetic opacities produce significant differences in the overall structure and dynamics of the column. At fixed accretion rate, increasing the magnetic field strength results in a shorter accretion column, despite the fact that the overall opacity within the column is larger. Moreover, the vertical oscillation amplitude of the column is reduced. Increasing the accretion rate at high magnetic fields restores the height of the column. However, a new, slower instability takes place at these field strengths because they are in a regime where the opacity increases with temperature. This instability causes both the average height of the column and the oscillation amplitude to substantially increase on a time-scale of ∼10 ms. We provide physical explanations for these results, and discuss their implications for the observed properties of these columns, including mixed fan-beam/pencil-beam emission patterns caused by the oscillations.

     
    more » « less
  2. ABSTRACT

    We perform 2D axisymmetric radiative relativistic MHD simulations of radiation pressure supported neutron star accretion columns in split-monopole magnetic fields. The accretion columns exhibit quasi-periodic oscillations, which manifest in the luminosity power spectrum as 2–10 kHz peaks, together with broader extensions to somewhat higher frequencies. The peak frequency decreases for wider columns or higher mass accretion rates. In contrast to the case of shorter columns in uniform magnetic fields, pdV work contributes substantially to maintaining the radiation pressure inside the column against sideways radiative cooling. This is in part due to the compression associated with accretion along the converging magnetic field lines towards the stellar surface. Propagating entropy waves which are associated with the slow-diffusion photon bubble instability form in all our simulations. Radial advection of radiation from the oscillation itself as well as the entropy waves is also important in maintaining radiation pressure inside the column. The time-averaged profile of our fiducial simulation accretion is approximately consistent with the classical 1D stationary model provided one incorporates the correct column shape. We also quantify the porosity in all our accretion column simulations so that this may also in principle be used to improve 1D models.

     
    more » « less
  3. ABSTRACT

    High luminosity accretion on to a strongly magnetized neutron star results in a radiation pressure dominated, magnetically confined accretion column. We investigate the dynamics of these columns using 2D radiative relativistic magnetohydrodynamic simulations, restricting consideration to modest accretion rates where the height of the column is low enough that Cartesian geometry can be employed. The column structure is dynamically maintained through high-frequency oscillations of the accretion shock at ≃ 10–25 kHz. These oscillations arise because it is necessary to redistribute the power released at the accretion shock through bulk vertical motions, both to balance the cooling and to provide vertical pressure support against gravity. Sideways cooling always dominates the loss of internal energy. In addition to the vertical oscillations, photon bubbles form in our simulations and add additional spatial complexity to the column structure. They are not themselves responsible for the oscillations, and they do not appear to affect the oscillation period. However, they enhance the vertical transport of radiation and increase the oscillation amplitude in luminosity. The time-averaged column structure in our simulations resembles the trends in standard 1D stationary models, the main difference being that the time-averaged height of the shock front is lower because of the higher cooling efficiency of the 2D column shape.

     
    more » « less
  4. null (Ed.)
  5. Accretion disks around supermassive black holes in active galactic nuclei produce continuum radiation at ultraviolet and optical wavelengths. Physical processes in the accretion flow lead to stochastic variability of this emission on a wide range of time scales. We measured the optical continuum variability observed in 67 active galactic nuclei and the characteristic time scale at which the variability power spectrum flattens. We found a correlation between this time scale and the black hole mass extending over the entire mass range of supermassive black holes. This time scale is consistent with the expected thermal time scale at the ultraviolet-emitting radius in standard accretion disk theory. Accreting white dwarfs lie close to this correlation, suggesting a common process for all accretion disks.

     
    more » « less